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ABSTRACT

In the geographical field, the studies have been on service areas using the Voronoi diagram and its 
derived models is extensive, but there is a lack of effective methods to achieve a good area-weight 
proportionality between generators and their exclusive regions. As a famous visualizing method, 
adaptive multiplicatively weighted Voronoi diagrams are able to achieve it, but are limited to displaying 
non-spatial data. The approach of the area-weight proportional multiplicatively weighted Voronoi 
diagram is proposed to solve these problems by allowing for spatial division with a point-fixed iteration 
approach and a vector-based multiplicatively weighted Voronoi diagram construction method from 
point features with spatial coordinates and references in GIS environments. It enables one to create a 
set of regions that is proportional to the weights of the generators. The method is successfully tested 
on a series of cases. The approach aims to establish a kind of spatial data model to represent demand 
and supply situations in real life.
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INTRODUCTION

Spatial partitioning is an important method in the geographic field. It uses a set of specific constraints 
or criteria to divide a finite geographic area into a lot of non-overlapping subareas (Wang et al., 
2014). A delimiting service area is one of the most interesting topics in spatial partitioning, as nearly 
everyone needs a variety of services provided by different facilities in their daily life (Wang et al., 
2018). In most cases, people choose their interested facilities by considering some factors, such as 
the geographic distribution, the service area, and the transportation convenience of facilities. The 
methodology of service area delimitation has been applied to various fields, such as the delineation 
of school catchment areas (Caro, 2004), market areas (Ríos-Mercado & Fernández, 2009), residential 
care facilities (Cheng et al., 2012), healthcare facilities (Steiner et al., 2015), and political districts 
(Ricca et al., 2013).
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A variety of models have been proposed and developed to delineate service areas, in which the 
Voronoi diagram is a particularly famous one. The Voronoi diagram, named after Georgy Voronoi 
(Voronoi, 1908), is a method to partition space into several subareas (called Voronoi regions or 
Voronoi cells) from a predetermined set of points (called sites, seeds, or generators) by comparing 
their Euclidean distances, in which generators are abstracted as cities, hospitals, and schools, and the 
Voronoi regions represent their service areas. It has various names in different fields, such as Thiessen 
polygons in geography (Thiessen, 1911) and Dirichlet tessellation in mathematics (Dirichlet, 1850). 
In order to solve more real-world problems, many derived Voronoi diagrams have been developed, 
such as the weighted Voronoi diagram (Aurenhammer & Edelsbrunner, 1984; Mu, 2010; Gong et 
al., 2012), the centroidal Voronoi diagram (Du et al., 1999), the Voronoi treemap (Tian et al., 2015; 
Tian, 2021), and the city Voronoi diagram (Görke & Wolff, 2005).

A weighted Voronoi diagram can be divided into four major categories. They are the additively 
weighted Voronoi diagram, the multiplicatively weighted Voronoi diagram (MWVD), the additively 
weighted power Voronoi diagram, and the compoundly weighted Voronoi diagram (Okabe et al., 
2000). The MWVD has a wider range of applications in service area delimitation than the other 
three weighted Voronoi diagrams for many reasons. First, each generator is located inside its own 
multiplicatively weighted Voronoi region. Second, all of the available space must be divided up by a 
set of generators, that is, there is no unallocated space in an WWVD. Third, it supports the notion of 
area-weight proportionality, that is, a generator with a larger weight dominates a larger multiplicatively 
weighted Voronoi region. Fourth, it puts distance and weight in a ratio relationship leading to that 
the changing of data units will not alter the result of the MWVD construction. Fifth, and the most 
important, several spatial interaction models can be expressed by the MWVDs, such as the Reilly 
model (Reilly, 1929), Converse model (Converse, 1949), and Huff model (Huff, 1964), which make it 
more attractive for service area delimitation. Mu (2004) classified the applications of the MWVD into 
four periods: (1) Early prototypes from the1800s to the 1940s. (2) Application in market and urban 
analysis from 1950s to 1970s. In this period, the MWVD was used as a mathematical and geometric 
solution in market and urban analysis (Huff & Jenks, 1967; Boots, 1975). (3) Parallel development 
in computer geometry and GIS from the 1980s to the 1990s. During this time, the MWVD began to 
be integrated in the GIS environment (Vincent & Daly, 1990). (4) From algorithm to implementation 
(1990s and beyond). In this period, the MWVD was widely used as a model to solve problems, such 
as Zhang et al (2018) introduced, to analyze ecosystem services coverage, and Mu and Wang (2006) 
utilized it to study spatial patterns of urban hierarchy in the United States.

However, the area-weight proportionality for an MWVD is only approximate, as the weights 
in an MWVD scale distance rather than area (Reitsma et al., 2007). As a result, regions with low 
weights tend to be squeezed by those with large weights. Then, some questions surfaced: how to 
achieve a good area-weight proportionality between generators and their exclusive regions based on 
the MWVD and whether this special type of the MWVD can be used to better delineate service area.

To solve the above problem, Related Works are introduced in the following section. The 
Definitions for the Area-Weight Proportional Multiplicatively Weighted Voronoi Diagram section 
introduces the definitions for the area-weight proportional multiplicatively weighted Voronoi diagram 
(or the APMWVD) and the relevant properties. The APMWVD Construction Algorithm section 
elaborates on the implementation of the APMWVD construction algorithm. The section Examples 
shows several examples to verify the feasibility of the algorithm. Results and Discussions and 
Conclusions are the final two sections.

RELATED WORKS

Two studies deserve to be mentioned. The one is the adaptive additively weighted Voronoi diagram 
proposed by Moreno-Regidora et al. (2012) on a discrete version. In this model, the generators are the 
centroids of zones, and their weights are computed iteratively until each zone reaches the expected 
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size based on a distance function of the shortest path. The other is the adaptive multiplicatively 
weighted Voronoi diagram (AMWVD) proposed by Reitsma et al. (2007) in a raster-based way. It 
is an information space partitioning model, which combines a fixed-point iteration method with an 
optional spatial resolution refinement method using quadtree decomposition. In this method, the 
weights of generators are updated in each iteration based on the weights and the error of the preceding 
iteration, and the multiplicatively weighted Voronoi regions are repeatedly constructed to achieve a 
proper area-weight proportionality. This approach was tested by the authors on many cases to prove 
that it could be used to visualize hierarchical data (Sethia et al., 2004; Reitsma & Trubin, 2006; 
Reitsma et al., 2007).

From the introduction we know that the MWVD has several advantages in service area 
delimitation; meanwhile, although the AMWVD proposed in the research of Reitsma et al. (2007) is a 
non-geographic approach, it still provided an inspiration for us because of its area-weight proportional 
partitioning property. Hence, we try to introduce this information visualization algorithm into the 
field of geography to generate an area-weight proportional layout with spatial information to better 
visualize and understand the service areas of spatial objects. It may assist us in understanding the 
balance of supply and demand of facilities in real life and provide us with some auxiliary decisions in 
several aspects, such as location and optimization of facilities and facility layout policy adjustment.

In order to expand applications of the weighted Voronoi diagrams in the geographic field, more 
research made effort to bring various types of weighted Voronoi diagram nowadays into GIS. Mu 
(2004) provided a precise computation of the MWVD. The result can be saved in shapefile formats 
and used in GIS environment. Dong (2008) tried to create MWVDs for points, lines, and areas in a 
raster-based approach based on ArcObjects. But the algorithm efficiency is low; creating a MWVD 
for 200 points requires about 15 minutes. Tian (2015, August 2-5; 2021) proposed a universal vector-
based algorithm based on ArcGIS engine (AE) to generate the MWVDs and the geographical Voronoi 
treemaps for points through the methods of regions division and regions merging with high precision 
and practicability.

Mixed with the theoretical research on the AMWVD of Reitsma et al. (2007) and method study 
on the weighted Voronoi diagrams of Tian (2015, August 2-5; 2021), the approach of the area-weight 
proportional multiplicatively weighted Voronoi diagram is presented.

Definitions for the Area-Weight Proportional 
Multiplicatively Weighted Voronoi Diagram
Let q(x,y) be a point and P={p1,p2,...,pn} be a set of n disjoint generators (points) in the plane E2 and 
let (xi,yi) be the coordinate of the generator pi. Each generator pi is assigned a positive weight w(pi). 
The following is a multiplicatively weighted distance function between q and pi:

d q p
x x y y

w p
w p

mw i
i i

i
i
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( ) ( )
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, ( )=

− + −
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Then the multiplicatively weighted dominance of the generator pi over a generator pj, called 
Dom(pi, pj), can be represented by:

Dom p p q E d q p d q p p P p P p
i j mw i mw j i j i
( , ) { | ( , ) ( , ), , { }}= ∈ ≤ ∈ ∈ −2 	 (2)

To construct the multiplicatively weighted Voronoi region of a generator pi, we should create 
the multiplicatively weighted dominances of pi over every generator other than pi in P. Then the 
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intersection of these dominances should be computed. Aurenhammer and Edelsbrunner (1984) 
presented a formulation to define the multiplicatively weighted Voronoi region for a generator pi as:

V p Dom p p
i

p P p P p
i j

i j i

( ) ( , )
, { }

=
∈ ∈ −
 	 (3)

Consequently, the multiplicatively weighted Voronoi diagram of P in E2, denoted as the MWVD, 
is defined as:

V P V p
p P

i
i

( ) ( )=
∈
 	 (4)

For an MWVD V(P)={V(p1),V(p2),…,V(pn)}, let s(V(pi)) be the area of the multiplicatively 
weighted Voronoi region V(pi) in V(P) and a(pi) be an desired dominance area of the generator pi, if 
each region V(pi) in V(P) satisfies as:
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then the MWVD V(P) is called the area-weight proportional multiplicatively weighted Voronoi 
diagram.

It can be known from the above definition that an APMWVD is an MWVD in fact in which the 
areas of the multiplicatively weighted Voronoi regions satisfy a certain proportional relationship with 
the weights of their corresponding generators. For an APMWVD V(P)={V(p1),V(p2),…,V(pn)} and 
its corresponding generators P={p1,p2,...,pn} with weights {a(p1),a(p2),…,a(pn)} in finite region R, 
it has the following characteristics:

a) 	 The location of each generator pi cannot change:

Dp
i
=0 	 (6)

b) 	 Each generator pi is located inside its multiplicatively weighted Voronoi region V(pi):

p V p
i i
 ( )¹ 0 	 (7)

c) 	 Total area of the multiplicatively weighted Voronoi regions equals the area of R, called s(R):

s V p s V P s R
i

i

n

( ( )) ( ( )) ( )
=
∑ = =
1

	 (8)

d) 	 For each generator pi, the ratio of its weight a(pi) to its multiplicatively weighted Voronoi region 
area s(V(pi)) is a fixed value:
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e) 	 The area of a multiplicatively weighted Voronoi region V(pi) satisfies a certain proportion with 
the area of region R as follows:
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We define a finite range R because a borderless APMWVD is not solvable as a region with an 
infinite area, it makes area calculations and proportions impossible (Trubin, 2006).

It can be known that an APMWVD is derived from an MWVD. The weights scale 
distance in an MWVD, and the scale area in an APMWVD is shown in Figure 1. As regions 
with large weights in an MWVD tend to be oversized whereas those with low weights are 
undersized (Reitsma et al., 2007), it is difficult for an MWVD to achieve a good area-weight 
proportionality, that is, it is hard to construct a real APMWVD from an MWVD that satisfies 
Equations (5), (9), and (10). Nevertheless, an approximate APMWVD can be generated by 
using an adaptive version of an MWVD. In the following section, an adaptive construction 
method of an APMWVD from an MWVD is introduced.

Figure 1. An MWVD and an APMWVD of three same generators with weights 1, 3, and 7
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THE APMWVD CONSTRUCTION ALGORITHM

Let P={p1,p2,...,pn} be a set of n (n>1) disjoint generators in the finite range R and a(pi) be the final 
desired dominance area of pi. Let wk(pi) be the weight of pi, Vk(pi) be the multiplicatively weighted 
Voronoi region of pi, s(Vk(pi)) be the area of Vk(pi) and Vk(P) be the MWVD at k-th iteration. The 
basic thought of the APMWVD construction method is as follows: calculate the difference between 
a(pi) and s(Vk(pi)) at k-th iteration and adapt the weight wk(pi) in accordance with the area difference. 
Generate a new MWVD Vk+1(P) based on new weights wk(P)={wk(p1), wk(p2),…,wk(pn)} and judge 
if Vk+1(pi) and a(pi) are satisfying Equation 5. If it satisfies, the process ends, otherwise the above 
process is repeated.

To clarify the process of the APMWVD construction clearly, the steps and pseudocode are 
given as follows:

Step a. Normalize a(pi) and get a’(pi).
Step b. Let wk(pi)= a’(pi), in which k=1.
Step c. Create the MWVD Vk(P).
Step d. Calculate the normalized area of Vk(pi) and get s’(Vk(pi)).
Step e. Calculate the difference between a’(pi) and s’(Vk(pi)). If the area difference or the iteration 

is less than a default threshold, then the algorithm ends, otherwise let k=k+1 and adapt wk(pi) 
based on the area difference to create wk+1(pi).

Step d. Repeat step c to step e.

Figure 2. The process of an APMWVD construction
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Algorithm 1. APMWVD construction

Input: P={p1
,p

2
,…,p

n
}, a set of n generators with the property that 

each p
i
ÎP corresponds to a weight value a(p

i
);R: the range of P; a 

positive, nonzero scaling constant β; thresh_a, thresh_b: 
thresholds to deceive whether to end the algorithm 
Output: an APMWVD V(P)
Begin
k=1
err=¥
a’(P)=Normalization(a(P)) %Data normalization for a(P) 
initialize w

k
(P): a set of n weights at k-th iteration

for i:=1; step 1 until n do
   w

k
(p

i
)=a’(p

i
)

endfor
while(err<thresh_a or k <thresh_b) do
   V

k
(P)=CreateMWVD(P,w

k
(P), R) %Create a MWVD 

   %Data normalization for s(V
k
(P)), s(V

k
(P))={s(V

k
(p

1
)), 

   s(V
k
(p

2
)),…, s(V

k
(p

n
))}

   s’(V
k
(P))=Normalization(s(V

k
(P))) 

   %Adapt the weight set w
k
(P) and generate the weight set w

k+1
(P)

   w
k+1
(P)=CalculateNewWeights(s’(V

k
(P)), a’(P), w

k
(P), β);

   %Calculate difference between s’(V
k
(P)) and a’(P)

   err=GetError(s’(V
k
(P)), a’(P))

    k++
endwhile
End

Data Normalization for an APMWVD
It can be known from Algorithm1 that s(Vk(pi)) is the area belonging to generator pi after iteration 
k and a(pi) is the weight of the generator pi in P. In order to get a better iteration, both s(Vk(pi)) and 
a(pi) need to be normalized such that:

a p
a p

a pi
i

i

'( )
( )

( )
=
∑

	 (11)

and:

s V p
s V p

s V pk i
k i

k i

'( ( ))
( ( ))

( ( ))
=
∑

	 (12)

where a’(pi) is the target area of the generator pi and s’(Vk(pi)) is the area of the multiplicatively 
weighted Voronoi regon after normalization. Both a’(pi) and s’(Vk(pi)) are between 0 and 1 satisfying 
such that:
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The function Normalization () is used for data normalization as follows.

Algorithm 2. Normalization ()

Input: a set of n values V={v1
,v

2
,…,v

n
}

Output: a set of n normalized values nV={nv
1
, nv

2
,…, nv

n
}

Begin
sumV=sum(V) %get a summation of V
Initialize an array nV for a set of n normalized values.
for i:=1; step 1 until n do
   nv

i
=v

i
/sumV

endfor
End

The Construction of an MWVD
In Algorithm 1, we utilize the function CreateWVD() proposed by Tian et al. (2015, August 2-5) 
to generate an MWVD. This function uses the idea of an incremental method as shown in Figure 
3: Every time a new generator pj is inserted, the original multiplicatively weighted Voronoi 
regions V(pi) (i=1,2,…,j-1) will be redivided to generate a new multiplicatively weighted Voronoi 
regionV(pj) belonging to pj by using methods of region division(function DivideRegionWithPB() 
and DivideRegionWithArc()) and region union(function MergeRegions()). In Figure 3c, dominances 
of pj, that is, Dom(pi,pj) mentioned in Equation 2, are divided from the existing multiplicatively 
weighted Voronoi regions V(P)={V(p1),V(p2),…,V(pj-1)} by using function DivideRegionWithPB() 
and DivideRegionWithArc(). In Figure 3d, Dom(pi,pj) are merged to generate the multiplicatively 
weighted Voronoi region of pj by using function MergeRegions().

A Fixed-Point Iteration for an APMWVD
To construct an APMWVD from an MWVD, the key is to dynamically adjust the weight of each 
generator to minimize the difference between the final desired dominance area and the actual area of 
each multiplicatively weighted Voronoi region at each iteration. Thus, we use a fixed-point iteration 
method proposed by Reitsma et al. (2007) to adjust the weights of generators:

w p w p w p
k i k i i+ = +
1
( ) ( ) ( )∆ 	 (15)

where wk+1(pi) and wk(pi) are separately weights of the generator pi after iteration k and iteration k+1, 
Δw(pi) is the weight adjustment factor.

We make the weight adjustment factor Δw(pi) proportional to three quantities: wk(pi), the weight 
of the generator pi at k-th iteration; a’(pi)-s’(Vk(pi)), the difference between the normalized desired 
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dominance area of the generator pi and the normalized area of the multiplicatively weighted Voronoi 
region of the generator pi after iteration k; and β, a positive, nonzero scaling constant:

∆w p w p a p s V p
i k i i k i
( ) ( ) ( '( ) '( ( )))= b - 	 (16)

Replacing Δw(pi) in Equation 15 with Equation 16 gives:

w p w p a p s V p
k i k i i k i+ = +
1

1( ) ( )( ( '( )) '( ( )))b - 	 (17)

In Equation 17, if a’(pi) is greater than s’(Vk(pi)) at k-th iteration, we can get a positive increased 
weight of the generator pi for (k+1)-th iteration with a proper set of β, thus the area of Vk+1(pi) will 
increase and the difference between a’(pi) and s’(Vk+1(pi)) will be less. The same result will be acquired 
while a’(pi) is less than s’(Vk(pi)) with a proper set of β. After enough iterations, we can minimize the 
difference between the desired dominance area and the actual area of each multiplicatively weighted 
Voronoi region.

It can be known from Equations 11 and 12 that 0< a’(pi) <1 and 0< s’(Vk(pi)) <1. Thus, the 
difference between a’(pi) and s’(Vk(pi)) is in the range:

Figure 3. The basic thought to create an MWVD 
(Tian et al., 2015, August 2-5) 
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− < <1 1a p s V p
i k i

'( ) '( ( ))- 	 (18)

After multiplying by β and adding 1, we obtain:

1 1 1 0− < + < + >b b b b( '( ) '( ( ))) ,a p s V p
i k i
- 	 (19)

Accordingly, choosing β>1 may get the minimized area difference in fewer iterations and the 
algorithm converges more quickly. However, it may result in negative weights and increases the 
likelihood of error function oscillation because larger values of β produce larger adjustments of the 
weights (Reitsma et al., 2007). To assure wk+1(pi)>0 in Equation 17, β should be in the range (0,1].

The function CalculateNewWeights() is a realization of the fixed-point iteration method as 
mentioned above:

Algorithm 3. Calculate New Weights()

Input: a set of n actual areas S={s1
,s

2
,..,s

n
}, a set of n desired 

areas A={a
1
,a

2
,…,a

n
}, a set of n weights W={w

1
,w

2
,…,w

n
}, a positive, 

nonzero scaling constant β
Output: a set of n new weights V={v

1
, v

2
,…, v

n
}

Begin
Initialize an array V for a set of n values.
for i:=1; step 1 until n do
   v

i
=w

i
(1+β(a

i
-s

i
))

endfor
End

Iterative Termination Metric
The APMWVD construction algorithm uses an iterative way to achieve an area-weight proportional 
balance for actual areas of multiplicatively weighted Voronoi regions and their desired areas. So, we 
must choose an operational metric to end the algorithm. Although it is possible for so many error 
metrics, the method of Wood (1974) is used in this paper as follows:

err
n

s V p a p

s V p
k i i

k ii

n

=
−

=
∑1
1

| '( ( )) '( ) |

'( ( ))
	 (20)

where, err is the mean proportional absolute error across all multiplicatively weighted Voronoi 
regions for an APMWVD.

The function GetError () is used to calculate the above-mentioned mean proportional absolute error:

Algorithm 4. Get Error ()

Input: a set of n actual areas S={s1
,s

2
,..,s

n
}, a set of n desired 

areas A={a
1
,a

2
,…,a

n
}

Output: err
Begin
sum=0
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for i:=1; step 1 until n do
   sum = sum +|s

i
-a

i
|/s

i

endfor
err=sum/n
End

Complexity Analysis
It can be known from research of Tian et al. (2015, August 2-5) that the complexity of the MWVD 
algorithm for n generators is:

O MWVD O n( ) ( )= 2 	 (21)

The complexity of an APMWVD construction algorithm mainly depends on that of the MWVD 
construction. Considering the iterative weight adjustments, the complexity of the APMWVD 
construction algorithm with k iterations is:

O APMWVD O kO MWVD O kn( ) ( ( )) ( )= = 2 	 (22)

EXAMPLES

Visualization of an APMWVD for Random Spatial Points
Figure 4a shows the results for an MWVD of nine, uniformly distributed generators with integer 
weights 1≤Wj≤9. Figure 4b exhibits the results for an APMWVD of the same generators and weights. 
We show the trajectory of err (Equation 20) for every iteration with β=0.1, 0.5, 0.9, 1, respectively in 
Figure 5, and the iteration numbers for different β while err<0.5,0.1,0.01,0.001,0.0001, respectively in 
Table 1. It can be apparently seen from Figure 5 and Table 1 that err could reduce to a certain value, 

Figure 4. The MWVD and APMWVD for nine generators with the same locations and weights
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such as 0.5,0.1,0.01,0.001,0.0001, with less iterations when β equals 1 than others. Thus, in order to 
get a quick rate of algorithm convergence, we suggest one lets β=1 in Equation 17.

We implemented the APMWVD construction algorithm in C# and ArcGIS Engine (a library of 
embeddable GIS components). Using four Core i5-3337U CPUs, each with 1.8 GHz, the constructions 
of an APMWVD with β=0.1, 0.5, 0.9 and 1 shown in Figure 4 required 5min, 57s, 32s and 30s, 
respectively. The running time is acceptable for many GIS applications.

Visualization of the APMWVDs for Residential Care Facilities
The goal of the APMWVD is to delineate the service area of spatial objects from the aspect of area-
weight proportionality in the geographic field. In this section, we express how to use an APMWVD 
to express the relationship between demand and supply of residential care facilities (RCFs).

To generate an APMWVD for RCFs, we first need a point file in shapefile format representing 
the spatial distribution of RCFs and a polygon file used as the boundary of them. Then, the weights 
of RCFs should be confirmed. We choose the Dongcheng and Xicheng Districts of Beijing in China 
as the study area. The spatial data are acquired from the State Bureau of Surveying and Mapping with 
WGS 1984 UTM projection, which contains 32 subdistricts. The data of RCFs are acquired from 
the Beijing Municipal Civil Affair Bureau on its website. The latest data are from 2010 (the website 

Figure 5. The trajectory of err for the APMWVD of nine generators at every iteration while β=0.1, 0.5, 0.9, 1

Table 1. Iteration numbers for the APMWVD of nine generators in Figure 4 with different errs while β=0.1, 0.5, 0.9, 1

err<0.5 err<0.1 err<0.01 err<0.001 err<0.0001

β=1 2 11 39 78 134

β=0.9 2 12 43 87 148

β=0.5 2 21 78 155 264

β=0.1 2 101 391 772 1312
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stopped updating data later). There were 35 RCFs in the Dongcheng and Xicheng Districts of Beijing 
from 2010. Motivated by the research on residential care facilities (Cheng et al., 2012; Zhou et al., 
2013; Tao et al., 2014), the number of beds of the RCF is chosen as the weight, which ranges from 
8 to 340. The total number of beds of 35 RCFs is 2936.

Let β=1, thresh_a=5000, thresh_b=0.01, P={p1,p2,…,pn} denote the RCFs in the Dongcheng 
District and Xicheng Districts of Beijing and R denote the administrative boundary of the Dongcheng 
District and Xicheng Districts of Beijing, an APMWVD for 35 RCFs can be constructed by using 
Algorithm 1 as is shown in Figure 6a. The Algorithm 1 ends at the 5000th iteration while err=0.046. 
Because an APMWVD is derived from a MWVD. To compare the effect of service area delineation, 
we also constructed an MWVD by using Tian’s method (Tian et al., 2015, August 2-5) as is shown 
in Figure 6b.

The population data of the elderly aging above 65 in the Dongcheng and Xicheng Districts at the 
subdistrict level are chosen to further explore the demand and supply situation between the elderly and 
RCFs by the APMWVD and MWVD, which is from the sixth population census. The total number 
of the elderly aging above 65 in the Dongcheng and Xicheng Districts is 270463. Then, the demand 
and supply ratio of the elderly population to bed number of RCFs (or DSR) in the Dongcheng and 
Xicheng Districts of Beijing delineated by the APMWVD and MWVD (Figure 7) can be acquired 
by using ArcGIS software as follows:

1. 	 Link the elderly population data to the map of the Dongcheng and Xicheng Districts. Each 
subdistrict is assigned a ‘population density’ value, which is the ratio of the elderly population 
in the subdistrict compared to the area of subdistrict.

2. 	 Obtain the elderly population in each service area of the APMWVD and MWVD through the 
Intersect Tool and Dissolve Tool. Because the Beijing municipal government has made a ‘‘9064’’ 
policy, that is, by 2020, 90% of the elderly would depend on family care, 6% of the elderly would 
depend on community care, and 4% of the elderly would depend on residential care, we can get 

Figure 6. The service area delineation of the APMWVD and MWVD for RCFs in Dongcheng and Xicheng districts of Beijing
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the number of the elderly who need to stay in RCFs in each service area of the APMWVD and 
MWVD, that is, 4% of the elderly in each service area of the APMWVD and MWVD.

3. 	 Calculate the DSR in each service area of the APMWVD and MWVD. Then, use ArcGIS to 
visualize the DSR (Figure 7).

The total DSR in the Dongcheng and Xicheng Districts is 270463×0.04/2936=3.68. The 
maximum value, minimum value, mean value and standard deviation of the DSRs of 35 service areas 
for the APMWVD in Figure 7a are respectively 6.25, 1.97, 3.74 and 1, while that for the MWVD in 
Figure 7b are 10.89, 0.08, 1.93 and 2.64, respectively. From above statistic data, Figures 7 and 8, it 
can be known that (1) the mean value of the DSRs of 35 service areas for the APMWVD are closer 
to the actual demand and supply situation of the elderly and RCFs; and (2) because the MWVD has 
a property that regions with large weights tend to be oversized whereas those with low weights are 
undersized, it leads to that the DSRs of 35 service areas in the MWVD have a large fluctuation range. 
Supply exceeds demand in some small service areas, whereas demand far exceeds supply in some large 
service areas; whereas the fluctuation range of the DSRs in the APMWVD is smaller. In summary, 
the APMWVD have more advantages in depicting demand and supply in the geographic field.

Since the main purpose of this paper is to introduce a method to generate a spatial layout by an 
APMWVD, the specific and deeper research on representing a demand and supply situation is not 
included in this paper; we leave this for future research.

RESULTS AND DISCUSSIONS

From the above sections, it can be known as follows:

1. 	 The idea of the APMWVD is aroused by the research of Reitsma et al. (2007) on AMWVD. 
Both methods use adaptive multiplicatively weighted Voronoi regions to visualize area. However, 
there are some differences between them (Table 2). AMWVDs are composed of multiplicatively 

Figure 7. The DSR in the Dongcheng and Xicheng districts of Beijing delineated by the APMWVD and MWVD
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weighted Voronoi regions without spatial information with the purpose of representing non-
spatial objects, while our proposed APMWVD consists of the multiplicatively weighted Voronoi 
regions and the corresponding generators with spatial coordinates and references that are used 
to visualize spatial objects. Generators can be regarded as schools, hospitals, cities, etc., and the 
multiplicatively weighted Voronoi regions represent their dominant areas. The precision of the 
generated APMWVD layout will be higher by this method than by a raster-based method.

2. 	 β determines the degree of algorithm convergence. In our experiment, β=1 may be the better 
choice (Figures 5 and Table 1). Overall convergence of the algorithm is good, at least for these 
small test cases (Figures 4 and Figure 6). The algorithm needs to loop through all point features 
one after another in each iteration using several complex topological operations, such as cell 
division and cell union, thus, the process may be relatively slow when facing massive inputting 
point features.

3. 	 The proposed algorithm can seamlessly work with GIS applications. The weights for an 
APMWVD can be acquired from a numeric field in the spatial attribute table of a point feature 
in the shapefile format. The inputting point set and the outputting APMWVD layer can be stored 
together in a geodatabase. By combining them with other vector-based or raster-based data for 

Figure 8. The DSR of each service area in the Dongcheng and Xicheng districts of Beijing delineated by the APMWVD and MWVD

Table 2. Differences between the AMWVD and APMWVD

The AMWVD The APMWVD

Composition multiplicatively weighted Voronoi regions multiplicatively weighted Voronoi regions

Representation Non-spatial objects Spatial objects

Spatial information None Spatial coordinates and references

Generators Pre-set Pre-set

Construction method A fixed-point iteration approach in a raster way A fixed-point iteration approach in a vector 
way
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overlaying analyses, more in-depth information may be obtained. In Figure 6, we combined the 
APMWVD layer with the population data of the elderly aging above 65 in the Dongcheng and 
Xicheng Districts, then the demand and supply situation of the elderly and RCFs can be obtained 
in Figure 7.

4. 	 In order to provide a clear interpretation and deep perception of the APMWVD visualization for 
users, enhancements like coloring, legends, scales, compass, etc., may also be used to decorate 
the generated layout using GIS symbols and styles (Figures 6 and 7).

5. 	 We did some preliminary testing to compare how to depict demand and supply by using an 
MWVD and an APMWVD in the section Visualization of the APMWVDs for Residential Care 
Facilities. According to the experimental data, the APMWVD performed well, no matter the 
fluctuation range of the demand and supply ratio or the reasonable presentation of the demand 
and supply situation.

CONCLUSION

Ordinarily, the MWVD is used for the delineation of service areas in the geographic field. The 
organization of an MWVD layout can be abstracted into two parts: a set of points, which describes the 
locations of spatial objects, and a set of spheres, which reveals the service area of spatial objects. But 
weights in an MWVD scale distance, so it is difficult for an MWVD to achieve a good area-weight 
proportionality. Thus, we proposed an APMWVD construction algorithm to visualize a spatial demand 
and supply situation. It can be known from experiments that the APMWVD is a good candidate for 
the type of area-weight proportional partitioning applied to depict the demand and supply situations 
that are modeled by constraints Equations 6–10. Because the APMWVD construction algorithm needs 
to loop through all generators in each iteration based on several complex topological operations, the 
process will be relatively slow while facing massive inputting generators. Therefore, the methods 
for increasing the efficiency of the algorithm should be further researched in the future. Although 
this study implemented the APMWVDs for delineating the RCFs service areas that consider the 
distribution of elderly population, the method may also be used for delimiting the service area of 
other public facilities (e.g., schools and supermarkets) and may be extended through considering other 
socioeconomic factors. As such, we believe that the APMWVD will offer some attractive promises 
for the presentation of demand and supply situations in the geographic field, especially helping city 
managers to allocate public service resources more efficiently.
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